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Abstract. The magnetization and magnetoresistance of La1−xAxMnO3 (A = Sr,Ca) single
crystals have been studied in the static regime. The same characteristics have been investigated
as functions of time in response to a sharp change of the magnetic field. The magnetic moment
M, dynamic magnetic susceptibilityχ ′, and resistivityρ are found to relax noticeably in the
samples with A= Sr (x = 0.3, 0.35). These parameters are shown to relax approximately
logarithmically over time. The relaxation is temperature dependent, and diminishes when the
temperature is far from that of the magnetic transition. The resistivity and magnetization do not
relax when the field direction is reversed instantaneously. The static and relaxation properties
observed are interpreted in the framework of a simple phenomenological model.

1. Introduction

The phenomenon of colossal negative magnetoresistance (CMR) in the manganese-based
perovskite-like compounds La1−xAxMnO3 [1], and analogous compounds, has recently
drawn close attention. In spite of the numerous thorough investigations, the origin of
the phenomenon is still under discussion. There are a variety of facts concerning the CMR
phenomenon which is found in the vicinity of the magnetic transition accompanied by a
transition of metal–insulator (semiconductor) type [2–11]. Some models involving double-
exchange interaction, scattering on the magnetic polarons, metal–insulator transition etc are
commonly used to discuss the possible nature of the CMR phenomenon. The role of the
phase-separated ferromagnetic–antiferromagnetic states in such systems is emphasized in
the review [4]. Nevertheless, the physical nature of the phases in this system is under
question. The dependence of the resistivity on the magnetic field in the perovskite-like
materials has been studied in numerous papers [1, 2, 4, 8, 10–14]. In particular, a detailed
study of the dependence of the resistivityρ on the magnetic fieldH and magnetization
M has been performed for the system La1−xSrxMnO3 in [2]. The authors of that paper
showed experimentally that the dependences ofρ on the temperatureT , magnetic fieldH ,
and concentrationx for T > Tc may be described by the simple equation

−ρ(H)− ρ(0)
ρ(0)

= C(x)
(
M(H)

Ms

)2

(1)

whereMs ≈ 4µB (per Mn site) is the saturation magnetization andC(x) is the coefficient
which changes from about 4 to 1 in thex-range 0.1–0.4 and does not depend onH andT .
This scaling ofρ with M fails for T < Tc: at lowH the resistivity keeps approximately to
a constant value, whereas the magnetizationM increases with the magnetic field.
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Additional information about the physical properties of the CMR systems can be
obtained by means of measurements of the relaxation phenomena in these media. Relaxation
of the magnetization, after a sharp change of the external magnetic field, was observed in
many magnetics. Sometimes the relaxation continues for many seconds, and is described
by a logarithmic law (see, for example, the investigation of the relaxation process in thin
ferromagnetic films in [15]). For systems with CMR, the observation of the magnetic
relaxation can assist one in tracking the correlation betweenρ andM in the process of the
relaxation, because during this process the magnetization changes with time, whereas the
external magnetic fieldH remains constant. Therefore, the main focus of this paper is on a
study of the relaxation effects in a system with CMR. We have performed the investigation
of these mixed systems for the most interesting region—in the vicinity of the magnetic
transition, where the negative magnetoresistance is very pronounced.

La1−xAxMnO3 single crystals with A= Sr, Ca were investigated in our study. The static
behaviour of the magnetization and resistivity is in agreement with known results (see [2]).
The noticeable relaxation of the magnetization, dynamic susceptibility, and resistivity has
been observed for samples with A= Sr (x = 0.3, 0.35). These relaxations are shown
to be most pronounced at the transition temperature, and to be approximately logarithmic
functions of time. The main features observed may be qualitatively explained within the
framework of a simple approach based on the consideration of a three-well potential with
a spatially distributed activation energy.

2. Experiment

All of the samples studied were bulk single crystals of La1−xAxMnO3 prepared by the
floating-zone melting procedure with radiation heating (see, for example, [16]). One crystal
with A = Ca (x = 0.22) and others with A= Sr (x = 0.1, 0.2, 0.3, 0.35) were studied. The
as-grown crystals were distorted cylinders about 10 mm in length and 3–5 mm in diameter.
The samples of La0.7Sr0.3MnO3 and La0.88Ca0.22MnO3 were examined carefully by x-ray
diffraction (Siemens D-500) and using an electron beam microanalyser (CAMEBAX SX-
50). Both crystals revealed diffraction patterns that were sufficiently nearly perfect, and
homogeneous phase compositions.

We measured the static magnetic moment (magnetizationM) of the as-grown crystals
or their fragments using a vibrating-sample magnetometer (VSM) in the magnetic field
(up to 1.5 T) of an electromagnet with a core diameter of 160 mm. Its magnetic field
settling time was several seconds. The dynamic magnetic (ac) susceptibilityχ = χ ′ + iχ ′′

measured by the conventional inductive method at frequencies in the range 102–103 Hz and
the electrical resistivityρ were studied in the magnetic field of the electromagnet mentioned
above or that of a smaller electromagnet made from an audio-frequency gap choke. The
latter electromagnet, with a special current supply, generated a stable magnetic field up to
3 kOe with a settling time of several milliseconds.

The ac susceptibility and resistivity measurements were carried out on plate-like samples
cut from the crystals. The current leads and potential probes were connected to the samples
with indium. Such connections gave a low-impedance electrical contact that permitted us
to use transport current values of up to 100 mA without any thermal problems. The pick-up
coil used for the ac susceptibility measurements was wound around the sample in its middle
region between the potential contacts. The copper–constantan thermocouple was in direct
thermal contact either with the sample or with the highly thermally conducting dielectric
plate holding the sample. These elements were put into a box made of thin silicon plates,
with outer dimensions of about 12× 12× 60 mm3. The copper wire coil and manganin
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double-wire heater were wound around this box. This thermal container was wrapped in
Teflon tape and put into the ducting under a cooling gas flow. The thermal container
used in the VSM measurements was almost the same. The holding and sweeping of the
temperature were maintained by an IGC-4 temperature controller (Oxford Instruments). This
system permitted us to hold the temperature of the sample within 0.1 K and to measure it
with an absolute accuracy better than 1 K.

In our experiment we studied the magnetic field, temperature, and temporal dependences
of the magnetizationM and resistivityρ at different mutual orientations of the magnetic
field and current relative to the crystallographic directions. We did not see any remarkable
orientation effects.

We would like to draw attention to some features of the characteristics studied near the
magnetic transition temperatureTc which are revealed most noticeably for La1−xSrxMnO3

at x = 0.3 andx = 0.35. Interest in these compounds is high, as they are extremely popular
candidates for applications. Furthermore, all of the results presented in the plots will be for
the sample withx = 0.3 only. The sample withx = 0.35 exhibits almost the same features,
except a slightly different value ofTc.

Figure 1. The magnetization curves obtained at various temperatures in the vicinity of the
magnetic transition temperature. The arrows show the directions of the magnetic field change.
In the inset, the dynamic magnetic susceptibilityχ ′ is shown as a function of the temperature for
the different magnetic fields:H = 0: solid curve;H = 500 Oe: dashed curve; andH = 1 kOe:
dotted curve. The two fields are parallel to each other.

2.1. Experimental results

At the beginning of our study, we made measurements of the static magnetic and electrical
characteristics of our samples. The main results are presented in figures 1 and 2. According
to the measurements of the temperature dependences of the resistivity and magnetic
susceptibility at the ac-field amplitude of 10 Oe, their sharp changes are observed at the
same temperature (see the insets to figures 1 and 2). The critical temperatureTc may be
evaluated asTc ≈ 352 K.



9772 L M Fisher et al

Figure 2. The magnetic field dependence of the normalized resistivityρ(H)/ρ(H = 0) at the
temperatures given in the plot. The inset shows the resistivity versus the temperature at the
magnetic fieldH = 0.

Figure 3. The changes of the resistivity, in arbitrary units (lower panel), in response to step-like
changes of the magnetic field (upper panel). Note that sharpH ↔ −H steps cause no changes
in and thus no relaxation ofρ.

Consider the magnetization curves for several temperatures nearTc that are shown in
figure 1. At 380 K the magnetization changes linearly with the external magnetic field,
as in paramagnetic materials. As the temperature decreases, a bend of theM(H) curve
appears and then displaces to lower fields. Also, the slope ofM(H) nearH = 0 increases
sharply, and saturates atT ≈ Tc. Such a behaviour ofM(H) is demonstrated also by the
solid curve representingχ ′(T ) in the inset to figure 1. As a result, all of the magnetization
curves have conjoint linear portions nearH = 0 at T < Tc. Note that the nonlinear parts
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of the magnetization curves prove to be sufficiently dependent on the field sweeping rate as
to be manifested in a hysteresis-like behaviour (the magnetization curves in figure 1 were
recorded at a sweeping rate of about 1 kOe min−1). This effect is most pronounced in the
vicinity of the transition temperatureTc. The hysteresis of the magnetization was observed
to decrease with the decrease of the sweeping rate.

The variation of the electrical resistivity with the external magnetic field in the vicinity
of Tc depends noticeably on the field sweeping rate too. To get almost static experimental
curvesρ(H), we used a low enough field sweeping rate, of about 0.1 kOe min−1. The
results of the measurements are presented in figure 2 for several temperatures nearTc. The
main features of the dependencesρ(H, T )/ρ(0, T ) nearTc that we would like to outline
are the following:

(i) at temperatures higher thanTc the resistivity depends weakly onH , and the shape
of the ρ(H) curve is convex;

(ii) at temperatures very close toTc the magnetic field dependence of the resistivity is
more pronounced, and, contrary to the case forT > Tc, the curveρ(H) is concave;

(iii) at temperatures lower thanTc the magnetic field change of the resistance is lower
than for the case whereT ≈ Tc; the curves are concave too.

As was mentioned above, the results of theM(H) andρ(H) measurements were rather
sensitive to the magnetic field sweeping rate. Therefore, we studied the response of our
sample to step changes of the magnetic field from some valueH1 to another valueH2. A
qualitative illustration of such responses ofρ(H, t) is presented in figure 3. The experiment
was done using the ‘fast’ magnet described above. In the upper panel of the figure, the
sequence of the magnetic field changes is shown. The curve in the lower panel is the
reaction of the magnetoresistance of the sample. The resistivity is clearly seen to change—

Figure 4. The relaxation of the normalized magnetization in response to a sharp change of
the magnetic field(0→ 9 kOe) at the temperatures in the vicinity of the magnetic transition
temperature. The solid lines show the best fit to a logarithmic law. In the inset, the relative
relaxation of the magnetic susceptibilityχ ′ in the magnetic fieldH = 1 kOe (fromH = 0) is
shown.
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at first quickly after the sharp drop ofH from zero to−3 kOe, and then a slow relaxation
process is observed. The timescale of the relaxation process goes up to dozens of seconds.
A similar relaxation ofρ is observed after a change ofH from −3 kOe to zero.

It is interesting to note that the relaxation occurs only for the steps in which the magnetic
field H is changed in modulus. If a fast step betweenH and−H occurs, no relaxation
process inρ(H) is observed. This fact is illustrated in figure 3 by the absence of a resistivity
change afterH is stepped from−3 kOe to 3 kOe.

Figure 5. The time dependence (relax-
ation) of the normalized resistivity in
response to a sharp change of the mag-
netic field (0 → 3 kOe) at the temp-
eratures specified in the plot.

We studied the relaxation phenomenon over a wide temperature range. The relaxation
processes were observed to occur both in the resistivity and in the magnetization in the
vicinity of Tc. Some of the results of our measurements are presented in figures 4 and
5. The resistivities and magnetizations in these figures are normalized with respect to the
jumps of these values as follows:

ρ∗(t) = [ρ(t)− ρ(H2)]/|ρ(H1)− ρ(H2)|
and

M∗(t) = [M(t)−M(H2)]/|M(H1)−M(H2)|
whereρ(H1), ρ(H2), M(H1), andM(H2) are the static values of these characteristics. The
resistivity and magnetization relaxations become close to a logarithmic law within a few
seconds after a magnetic field jump for all of the temperatures studied. Unfortunately,
measurements of the relaxation process of the magnetization were available only for the
magnetic field of the large electromagnet, having a time response of several seconds. For
this reason, we had to omit the data close to the origin of the time axis. It should be
emphasized that relaxation in the resistivity was always accompanied by relaxation in the
magnetization and vice versa. The strongest relaxation process is observed near the critical
temperatureTc, but it becomes weaker at higher and lower temperatures. (The relaxation
of the magnetic susceptibilityχ ′ is shown in the inset to figure 4.)

An interesting difference between the relaxations ofρ and M was observed. The
relaxation of the resistivity in response to the magnetic field change fromH1 to H2 follows
a logarithmic law for any values|H1| 6= |H2|. For example, the changes ofH from 0 to
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Figure 6. The relaxation of the normalized magnetization (a) and normalized resistivity (b) in
response to sharp changes of the magnetic field(0↔ 9 kOe) at T = 350 K. These dependences
are shown to be logarithm-like except in the case of the magnetization relaxation in response to
the 9 kOe↔ 0 jump; that relaxes according to a power law (see the inset in the upper panel).

9 kOe and from 9 kOe to 0 (see the lower panel in figure 6) evoke logarithm-like changes
of ρ∗(t) in the interval 10< t < 100 s which are approximately symmetrical with respect
to the lineρ∗ = 0. In contrast to that of the resistivity, the logarithm-like relaxation of the
magnetization was observed forH2 6= 0 only. In the case whereH2 = 0, the relaxation
process changes radically and is described by a power function. This result is presented in
the upper panel of figure 6 and its inset. The relaxation of the susceptibility has the same
asymmetry as the magnetization.

We also have looked for a relaxation effect in the samples with the other stoichiometry
(A = Ca, x = 0.22 and A= Sr, x = 0.1, 0.2). For some samples a small relaxation
effect has been observed in response to theH2 = 0 magnetic field change; however, our
experimental resolution limits us to estimating the relaxation magnitude as being at least
one order of magnitude lower than that presented above. So, we cannot reach any definite
conclusions about relaxation in these samples.

3. Discussion

Let us analyse our experimental data and compare them with some known results. To
deduce features of the CMR, it is useful to plot the dependence of the resistivity versus
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Figure 7. The scaling of the dimensionless resistivity with the dimensionless magnetization (in
units of the saturated magnetization). This scaling is shown to fail at temperatures just below
the transition temperature.

the magnetization. Figure 7 shows the change of the reduced resistivityρ(H)/ρ(0)
with the magnetizationM/Ms. The dependencesρ(H)/ρ(0) = F(M/Ms) in figure 7
are obtained by merging our experimental data forM(H) and ρ(H) (see figures 1 and
2). For T > Tc these dependences are clearly seen to be described by the universal
function ρ(H)/ρ(0) = A(M/Ms)

1.6, which is close to equation (1). This scaling law
fails below the temperatureTc. That is, reduction of the temperature by just 2 K from
Tc leads to a significant deviation of the experimental dependence from the scaling law.
In particular, at temperaturesT < Tc an appreciable negative magnetoresistance emerges
only after a considerable change in the magnetizationM. This inhibition of the negative
magnetoresistance is observed in the low-magnetic-field region, where the linear part of the
magnetization curve (figure 1) is realized. At higher fields whereM(H) has saturation-
like behaviour, the negative magnetoresistivity is very pronounced. Such a behaviour of
ρ(M)/ρ(0) was discussed previously in [2]. So, since the static characteristics studied
coincide with known ones (see, for example, [2, 11]), we believe our samples to be typical.

The observed static and relaxation characteristics of our samples are not unique, and
can be met in other (not perovskite) magnetic systems. A quite similar behaviour of the
magnetoresistance was observed, for example, for some antiferromagnetic compounds upon
suppression of the AFM state by a high magnetic field [17]. These features of the magneto-
resistance appear to be common for some magnetic materials, and are related to some
peculiarities of the system behaviour near the magnetic transition where different magnetic
phases may coexist [4]. Relaxation processes occur in some magnetic media also. The
logarithm-like relaxation in some magnetics is known to be an attribute of an ensemble
of small FM particles (see, for example, [15]). For such ensembles the relaxation has
been interpreted in terms of thermally assisted remagnetization of the particles, taking into
account a dispersion of the energy barriers which separate the states with different directions
of magnetization. Therefore, these circumstances provide grounds for considering that the
static and relaxation properties observed should not depend critically on a certain mechanism
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Figure 8. The qualitative picture of the phase coexistence for temperatures near the magnetic
transition.

of the magnetoresistivity. So, we hope that these properties may be described within the
framework of some phenomenological approach.

3.1. Possible interpretation

To construct a simple phenomenological model, we consider the following. Let two separate
magnetic phases with different electric properties coexist in perovskite materials [4]. For
example, these phases may differ in the charge carrier density, but it is assumed that there
are no crystal imperfections. The concentrations of these phases can change under the action
of the magnetic fieldH owing to a thermally activated transformation of one phase into the
other.

Let us accept that in the vicinity of the magnetic transitionTc this system is divided
into a ferromagnetic (FM) phase with a low resistivity and some antiferromagnetic or
paramagnetic phase with a high resistivity and weak magnetization (the WM phase). In
our consideration, we do not use any specific features of this phase, so it does not matter
which type of highly resistive phase with weak magnetization we consider. Moreover,
neither our experiment nor theory give any information about the type of magnetic ordering
of this phase. The WM phase dominates atT > Tc, whereas the FM phase gives a more
noticeable contribution atT < Tc. Also, let the FM phase be divided into phases with
oppositely directed magnetizations (FM1 and FM2). The phases are separated from each
other by energy barriers. (In figure 8, the energy states of the phase coexistence are shown
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schematically.) Consequently, the probabilities of the transitions between these states during
the characteristic timeτ0 are proportional to the multipliers exp(−U0/T ), exp(−U1/T ),
and exp(−U2/T ) for the following transitions: FM→ WM state, WM→ FM state, and
FM1→ FM2 state, respectively. The phase concentrationsc↑↑ (FM along theH-direction),
c↑↓ (WM), andc↓↓ (FM opposite to theH-direction) are defined by the following equations:

c↑↑ + c↑↓ + c↓↓ = 1

∂c↑↑
∂τ
= −c↑↑ exp(−(U0+M0H)/T )− c↑↑ exp(−(U2+M0H)/T )

+ c↑↓ exp(−U1/T )+ c↓↓ exp(−(U2−M0H)/T )

∂c↓↓
∂τ
= −c↓↓ exp(−(U0−M0H)/T )− c↓↓ exp(−(U2−M0H)/T )

+ c↑↓ exp(−U1/T )+ c↑↑ exp(−(U2+M0H)/T )

(2)

whereM0 is the FM phase magnetization, andτ = t/τ0 is dimensionless time. It is assumed
here that the energy barriers for the transitions FM→WM and FM1↔ FM2 change by the
valueM0H under exposure to a magnetic field. To obtain equations describing the static
and relaxation electromagnetic properties of our multiphase medium, we should write out
the relations of the magnetic moment and resistivity using the FM and WM concentrations.
We assume that these relations may be written as follows:

ρ(H) = (c↑↑(H)+ c↓↓(H))ρ1+ c↑↓(H)ρ2

M(H) = M0(c↑↑(H)− c↓↓(H))
(3)

where ρ1 and ρ2 are field-independent specific resistivities of the FM and WM phases,
respectively (ρ1 < ρ2). Of course, these equations are phenomenological, and we cannot
pretend that they give an absolutely correct description of theρ(H) andM(H) behaviour.
Nevertheless, they become exact in the limit case if the phases are connected in series, and
give a good approximation for a small change of the FM phase concentration withH in the
case of a complex parallel–series connection.

Using these equations and the set (2), it is possible to obtain a set of temporal equations
which allow us to analyse both the static and the relaxation properties of the resistivity and
magnetization of our system:

∂m

∂τ
= β

[
r sinh

(
M0H

T

)
−m cosh

(
M0H

T

)]
m = M/M0

∂r

∂τ
= γ

[
−r cosh

(
M0H

T

)
+m sinh

(
M0H

T

)
+ α(1− r)

]
r = ρ2− ρ

ρ2− ρ1

(4)

where

β = exp(−U0/T )+ 2 exp(−U2/T )

γ = exp(−U0/T )

α = 2 exp(−(U1− U0)/T ).

Let us, first, analyse the static properties. To do this, we substitute∂r/∂t = ∂m/∂t = 0
into the set (4), and obtain the static magnetic field dependence ofr andm as follows:

r(H) = α

α + [cosh(M0H/T )]
−1

m(H) = r(H) tanh(M0H/T ) =
α tanh(M0H/T )

α + [cosh(M0H/T )]
−1 .

(5)
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To compare the results obtained using our model with the experiment, we need to discuss
how the parameters change near the transition temperatureTc. At first, we assume that the
energy spectrum changes very sharply at the transition from the situation which is presented
in figure 8 forT > Tc to the situation shown in figure 8 forT < Tc. So, we shall use below
the feature that the barriers change substantially, fromU0 � U1 at T < Tc to U0 � U1

at T > Tc. In principle, bothM0 and ρ1,2 can also change with temperature. Moreover,
M0 equals zero at the temperatureTc1 > Tc at which the ferromagnetic state begins to
form. Nevertheless, for simplicity we assume that the critical temperaturesTc1 andTc are
essentially different, so we do not have to consider the temperature dependences ofM0, ρ1,
andρ2 nearTc. Also, taking into account smooth temperature dependences ofM0, ρ1, and
ρ2 would not qualitatively change the results obtained.

Figure 9. The calculated dependences of the dimensionless resistivity versus magnetic field for
different values of theα-parameter: line 1:α = 0.1; line 2: α = 0.5; and line 3:α = 2. In the
inset, the calculatedM(H) dependences for the sameα-values are shown.

Furthermore, we take into account the facts that the barrier heightU0 increases with
decreasing temperature nearTc and that the FM phase concentration begins to grow sharply.
This leads to a noticeable change of the parameterα from α = 2 exp(−U1/T ) � 1 for
T > Tc to a value of about or above unity forT 6 Tc. According to equations (5)
and (3), the resistivity drops in the vicinity ofTc at H = 0, which coincides with a
dielectric–metal transition. Figure 9 shows the magnetic field dependences ofM andρ at
temperatures lower and higher thanTc calculated by means of equations (5) and (3). To
compare the calculated dependences with the experimental results, we use three different
values of the parameterα. The inset in figure 9 demonstrates the calculated behaviour of
the magnetizationM(H)/M0 for T > Tc (curve 1),T ≈ Tc (curve 2), andT < Tc (curve 3).
The results of the calculations agree qualitatively with the experiment (figure 1), at least
at high magnetic fields. The main discrepancy is observed at low fields. The calculated
curves differ from each other at different temperaturesT < Tc, whereas the experimental
curvesM(H)/M0 almost coincide at lowH . The ρ(H) curve for T > Tc (curve 1) is
shown to be proportional toH 2, which is close to the experimental result (figure 2). The
maximum of the calculated magnetoresistance is obtained atT ≈ Tc (curve 2). Below
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Tc the magnetoresistance decreases (curve 3). It is clearly seen that these curves correlate
qualitatively with the experimental results.

To study the behaviour ofρ at low magnetic fields, we calculated the dependence of
the resistivity on the magnetization. Figure 10 shows the dependences ofρ/ρ(H = 0)
on M/M0 calculated for different temperatures. Curves 1, 2, and 3 correspond toT > Tc

(α � 1), T ≈ Tc (α ≈ 1), andT < Tc (α > 1), respectively. The trend in the changes of
the curves calculated for the model agrees qualitatively with our experiment. Indeed, the
ρ(M) dependence becomes slower at lowM with the temperature decrease. These results
agree also with the data of [2] (compare the inset to figure 10 and the data from [2]). Some
discrepancy between the experiment and our calculation is seen in the form of theρ(M)

curves. The calculated curves demonstrate a monotonic decrease ofρ(M), whereas the
experimental curves exhibit a resistivity that is practically independent of the magnetization
for low M for T < Tc.

Figure 10. The calculated dependences
of the dimensionless resistivity versus
magnetization for different values of the
α-parameter: line 1:α = 0.1; line 2:
α = 0.5; and line 3:α = 2. In the inset,
the calculatedρ(M) dependences for the
sameα-values are shown.

The discrepancies between our experiment and theory as regards the behaviour of the
magnetization and resistivity at low magnetic fields can be eliminated by making a single
additional assumption. We can assume that the energy barrier between the FM and WM
phases changes more slowly withH at low H and for T < Tc than we had assumed in
our calculations (U0(H) = U0(0) ±M0H ). Unfortunately, we do not know of a physical
explanation for such a behaviour ofU0(H).

Let us analyse now the temporal dependence of the characteristics studied in response
to the fast magnetic field change fromH1 to H2. In accordance with our approach, after
the field jump the change of the magnetic phase concentrations occurs. This is not an
instantaneous process, because of the presence of the barriers. Using equation set (4), one
can obtain the temporal dependences of the magnetization and resistivity:

δr(τ ) = 1r exp(−λ1τ)

δm = 1r tanh

(
M0H2

T

)
exp(−λ1τ)+

[
1m−1r tanh

(
M0H2

T

)]
exp(−λ2τ)

(6)
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where

1m = mst(H1)−mst(H2) 1r = rst(H1)− rst(H2)

λ1 = γ
[
α + (cosh(M0H2/T ))

−1
]

λ2 = β cosh

(
M0H2

T

)
+ γ cosh

(
M0H2

T

)
− γ

cosh(M0H2/T )
λ1� λ2

(7)

wheremst and rst are the static solutions defined by (5). Here it was assumed that the
barrier between the two FM phases was the smallest one, i.e., that the speed of the FM
phase remagnetization is high (β � γ , β � γα). Therefore, two relaxation times appear.
The shorter time relates to the FM phase remagnetization, whereas the other time is that of
the transition between the FM and WM phases.

This set of equations allows us to understand the absence of the relaxation in response to
H ↔ −H steps in our experiment. For such jumps the difference of the static resistivities
1r = 0, becauser is an even function ofH (see (5)). As a result, only the fast temporal
term (for the FM1↔ FM2 transition) is retained in equation (6).

Equations (6) allow us to explain the asymmetric magnetization relaxation for the jumps
of H from H1 6= 0 toH2 = 0 and back fromH1 = 0 toH2 6= 0. According to equation (6),
the relaxation of the magnetization for the jump ofH to zero (H2 = 0) is accomplished
in a short time 1/λ2, whereas for the jump ofH from zero toH2 6= 0 this relaxation is
accomplished in a long time 1/λ1. It is interesting that the relaxation of the resistivity is
accomplished in the long time 1/λ1 in both cases.

Figure 11. The resistivity relaxation calculated from equation (8).

It should be noted that, according to equation (6),M and ρ prove to be exponential
functions of time. The logarithm-like relaxations, which were experimentally observed, can
be connected with the dispersion of the barrier heights [15]. Averaging expression (6) and
keeping the temporal term involving the long time, we obtain

δr(τ ) = 1r
∫

dU0 f (U0) exp(− exp(−U0/T )[α + (cosh(M0H/T ))
−1]τ) (8)

wheref (U0) is the distribution function for the barrier height. If this function is rather wide
and smooth, one will obtain the logarithm-like relaxation. The results of this calculation are
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presented in figure 11. The relaxation is seen to be described by a logarithm-like law, which
converts to an exponential law at long times. These results agree well with the experimental
relaxation ofρ.

4. Conclusions

The static and relaxation properties of the magnetization and resistivity of single crystals
of the perovskite system La1−xSrxMnO3 with x up to 0.35 have been studied in detail.
Appreciable relaxations have been observed in compounds withx = 0.3 and 0.35. We
found the relaxation process to be most pronounced in the close vicinity of the magnetic
transition temperatureTc. Relaxations of the magnetization and resistivity accompany each
other always. The relaxation process is described by a logarithmic law for most cases,
except the case for switching off the external magnetic field, when the relaxation of the
resistivity remains logarithm-like whereas the magnetization relaxes according to a power
law. The other striking feature of this material is the absence of relaxation for a jump
of the external field fromH to −H . Both the relaxation and the static properties studied
may be qualitatively explained within the proposed simple phenomenological model of a
phase-separated ferromagnetic–antiferromagnetic state with different resistivities of the FM
and WM phases.

Acknowledgments

The authors would like to thank Dr K I Kugel and Dr S G Karabashev for stimulating
discussions and helpful remarks. This work was supported by the Russian Basic Research
Foundation, project No 96-02-17889.

References

[1] Jin S, Tiefel T H, McCormack M, Fastnacht R A, Ramesh R and Chen L H 1994Science264 413
[2] Urushibara A, Moritomo Y, Arima T, Asamitsu A, Kido G and Tokura Y 1995Phys. Rev.B 51 14 103
[3] Knizek K, Jirak Z, Pollert E, Zounova F and Vratislav S 1992J. Solid State Chem.100 292
[4] Nagaev E L 1996Sov. Phys.–Usp.39 781
[5] Schiffer P, Ramirez A P, Bao W and Cheong S W 1995Phys. Rev. Lett.75 3336
[6] Ju H L, Gopalakrishnan J, Peng J L, Li Q, Xiong G C, Venkatesan T and Greene R L 1995Phys. Rev.B 51

6143
[7] Kimura T, Tomioka Y, Kawahara H, Asamitsu A, Tamura M and Tokura Y 1996Science274 1698
[8] Ramirez A P 1997J. Phys.: Condens. Matter9 8171
[9] von Helmolt R, Wecker J, Samwer K, Haupt L and Barner K 1994J. Appl. Phys.76 6925

[10] Chahara K-i, Ohno T, Kasai M and Kozono Y 1993Appl. Phys. Lett.63 1990
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